Are registered reports an effective method to counter p-hacking?

$\bullet \bullet \bullet$

Andreas Holst Supervisor: Bram Duyx, PhD

Replication Crisis in Psychology

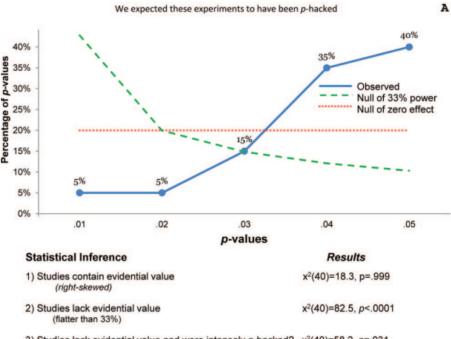
Open Science Collaborations (2015) article estimated that only 39% of psychological research can be replicated

- Statistics would predict 5% with significance level at $\alpha = 0.05$
- Researchers degrees of freedom (Simonsohn et al., 2011)
 - Increases the chances of finding false-positive results and overinflated effect sizes
 - 34 items of potential degrees of freedom (Wicherts et al., 2016)
 - p-hacking data analysis and eligibility decisions
- Selective publishing of significant results by journals
 - Survival of the fittest
 - Publication bias most published results are significant.
 - file-drawer problem
 - Researchers Degrees of Freedom + perverse incentives

Registered reports

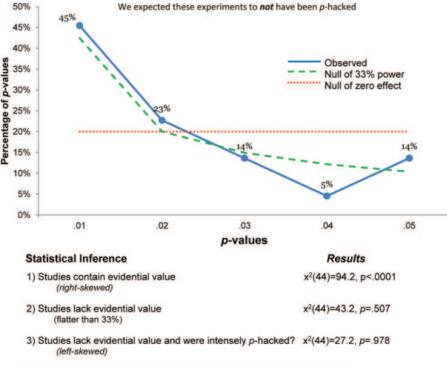
- Pre-registered reports sent to journals to be peer-reviewed (Center for Open Science)
 - Before collecting and analyzing data
 - Just 190 reports since 2013
 - Pre-registration requires researchers to disclose their methods in advance

- Journals base their decision of publication on the relevance of research question and quality of the research design, not results.
 - \circ Motivator to follow improved guidelines and disincentivizes p-hacking.


The p-curve (Simonsohn, Nelson, Simmons)

- Estimating the evidential value of a meaningful set of findings
 - Distribution of statistically significant p-values
 - Avoids the effects of publication bias on the sample

- There is evidential value if selective reporting can be ruled out as the sole reason for the results.
 - Estimated by the skewness of the graph
 - Inferenced with 3 statistical tests
 - Test for right skew
 - Test for flat right skew with 33% power
 - Power analysis


540

SIMONSOHN, NELSON, AND SIMMONS

 Studies lack evidential value and were intensely *p*-hacked? x²(40)=58.2, *p*=.031 (*left-skewed*)

The observed p-curve includes 20 significant p-values, an additional 3 were p>.05 Of those 20 p-values, 3 are p<.025, binomial test for right-skew: p>.999; for left-skew: p=.0013

The observed p-curve includes 22 significant p-values, an additional 3 were p>.05 Of those 22 p-values, 16 are p<.025, binomial test for right-skew: p=.026; for left-skew: p=.991.

Study aim & Hypothesis

This study investigates if registered reports are an effective way to counter p-hacking using the p-curve.

• Allows to avoid the effect of publication bias for more accurate estimations

Hypothesis:

- 1. The p-curve associated with registered reports has a significant result for right skew.
- 2. The p-curve associated with C-group has a significant result for flat right skew expected at 33% power.

Methods

Quasi-experimental Design

Confirmatory research

Independent variable - publication type

- categorical, nominal
 - registered reports
 - normal publication

Dependent variable - Evidential value

- categorical, ordinal
 - Set of studies contain evidential value
 - Set of studies needs further investigation
 - Lack of any evidential value
 - Set of studies were probably p-hacked

Inclusion criteria:

- Only psychological research
 - Confirmatory
 - Experimental
 - Continuous dependent variable
- Inclusion criteria of p-values
 - uniform distribution under the null hypothesis
 - \circ test relevant hypothesis
 - $\circ \quad \ \ {\rm statistically\ independent\ of\ other\ p-values}$

Exclusion criteria:

- journals publishing only one publication type. (matching)
- simultaneous recording devices.

Methods

Selecting p-values:

- 1. Identify hypothesis and study design
- 2. Identify the appropriate statistical test
- 3. Report the result of interest
- 4. Recompute the precise p-value(s)
- 5. Report robustness results.

Following this process with every study in the sample will result in a standardized "p-curve disclosure table"

Matching algorithm:

- Identify suitable independent p-values for the p-curve associated with registered reports in a public Center for Open Science Database.
 - a. Total of 190 studies
- 2. Find the articles in their original journal
- Find a p-value for C-group keeping all publishing related variables constant besides publishing type
 - a. RR center
 - b. First above article, then under
 - c. Does it match inclusion-exclusion criteria?

Statistical analysis

	Binomial Test (Share of results p<.025)	Continuous Test (Aggregate with Stouffer Method)	
		Full p-curve (p's<.05)	Half p-curve (p's<.025)
1) Studies contain evidential value. (Right skew)	<i>p</i> =.0352	<i>Z</i> =-3.94, <i>p</i> <.0001	Z=-3.38, p=.0004
2) Studies' evidential value, if any, is inadequate. (Flatter than 33% power)	p=.9344	<i>Z</i> =1.83, <i>p</i> =.9664	Z=3.74, p=.9999
	Statistical Power		
Power of tests included in <i>p</i> -curve	Estimate: 73%		
(correcting for selective reporting)	90% Confidence interval: (38% , 92%)		

Limitations and Questions

Only continuous dependent variable underlying the p-value

Only experimental designs

Confirmatory research

Is the p-curve a valid measure?

Is it an accurate measure?

• Can the p-curve distinguish well enough between the levels of the dependent variable?

Is there a difference in power analysis and a test for left skew?

Thank you for listening!